33 research outputs found

    Orientation Sensitive Terahertz Resonances Observed in Protein Crystals

    Full text link
    A method is presented for measuring anisotropic THz response for small crystals, Crystal Anisotropy Terahertz Microscopy (CATM). Sucrose CATM measurements find the expected anisotropic phonon resonances. CATM measurements of protein crystals find the expected broadband water absorption is suppressed and strong orientation and hydration dependent resonant features.Comment: 3 page

    Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by sub-gap magneto-optical spectroscopyElectronic

    Get PDF
    We employ Faraday and Kerr effect spectroscopy in the infrared range to investigate the electronicstructure ofGa1 xMnxAsnear the Fermi energy. The band structure of this archetypical dilute-momentferromagnetic semiconductor has been a matter of controversy, fueled partly by previous measurements ofthe unpolarized infrared absorption and their phenomenological impurity-band interpretation. Unlike theunpolarized absorption, the infrared magneto-optical effects we study are intimately related to ferromag-netism, and their interpretation is much more microscopically constrained in terms of the orbital characterof the relevant band states. We show that the conventional theory of the disordered valence band with anantiferromatnetic exchange term accounts semiquantitatively for the overall characteristics of themeasured infrared magneto-optical spectra

    Infrared anomalous Hall effect in SrRuO3_3: Evidence for crossover to intrinsic behavior

    Full text link
    The origin of the Hall effect in many itinerant ferromagnets is still not resolved, with an anomalous contribution from the sample magnetization that can exhibit extrinsic or intrinsic behavior. We report the first mid-infared (MIR) measurements of the complex Hall (θH\theta_H), Faraday (θF\theta_F), and Kerr (θK\theta_K) angles, as well as the Hall conductivity (σxy\sigma_{xy}) in a SrRuO3_3 film in the 115-1400 meV energy range. The magnetic field, temperature, and frequency dependence of the Hall effect is explored. The MIR magneto-optical response shows very strong frequency dependence, including sign changes. Below 200 meV, the MIR θH(T)\theta_H (T) changes sign between 120 and 150 K, as is observed in dc Hall measurements. Above 200 meV, the temperature dependence of θH\theta_H is similar to that of the dc magnetization and the measurements are in good agreement with predictions from a band calculation for the intrinsic anomalous Hall effect (AHE). The temperature and frequency dependence of the measured Hall effect suggests that whereas the behavior above 200 meV is consistent with an intrinsic AHE, the extrinsic AHE plays an important role in the lower energy response.Comment: The resolution of figures is improve

    Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by sub-gap magneto-optical spectroscopy

    Get PDF
    We employ Faraday and Kerr effect spectroscopy in the infrared range to investigate the electronic structure of Ga1-xMnxAs near the Fermi energy. The band structure of this archetypical dilute-moment ferromagnetic semiconductor has been a matter of controversy, fueled partly by previous measurements of the unpolarized infrared absorption and their phenomenological impurity-band interpretation. The infrared magneto-optical effects we study arise directly from the spin-splitting of the carrier bands and their chiral asymmetry due to spin-orbit coupling. Unlike the unpolarized absorption, they are intimately related to ferromagnetism and their interpretation is much more microscopically constrained in terms of the orbital character of the relevant band states. We show that the conventional theory of the disordered valence band with dominant As p-orbital character and coupled by kinetic-exchange to Mn local moments accounts semi-quantitatively for the overall characteristics of the measured infrared magneto-optical spectra.Comment: 4 pages 3 figure

    Terahertz underdamped vibrational motion governs protein-ligand binding in solution

    Get PDF
    Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein–molecule interactions, and has wider implications for biochemical reactivity and biological function

    Elusive vibrations

    No full text
    corecore